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Abstract—The timing estimation models in spoken dialogue
systems (SDSs) have typically been trained by human responses
in order to achieve the appropriate response timing. However,
human response timings are not always appropriate: in a previous
experiment in which annotators listened to responses with the
timings replaced by fixed values, some responses with the mode
value sounded more realistic than actual human responses. Since
this previous experiment was a small-scale preliminary one
that only showed that some speakers tended to be significantly
preferred, in the current study, we conducted an experiment on
about 1,700 human responses, and scored whether they could
be replaced with the mode value. The results showed that the
annotators tended to feel that mode (or perhaps from 0 ms to
400 ms) responses are more appropriate than actual overlappings.
We determined the responses that could and could not be replaced
with the mode value by a chi-square test and then formulated a
detection task to predict them from the scores. The evaluation
results showed that our proposed simple model outperformed
random selection with the AUC of 0.650. On the basis of these
results, we present examples of SDSs, using the score to predict
which responses or response timings are appropriate for the SDS
users. Our findings may suggest a more efficient way to determine
the appropriate response timing for SDSs compared to training
models by corpus data.

I. INTRODUCTION

To achieve natural responses in spoken dialogue systems
(SDSs), it is crucial to predict the response time that humans
perceive as appropriate and then have the system respond at the
appropriate timing. However, in daily conversations, the appro-
priate response time for humans is not always clear, depending
as it does on human perception. In addition, the speaker who
responds to the interlocutor’s utterances does not always pay
attention to the response time, so some responses may sound
inappropriate (early or late) to the observer. A previous study
reported that some responses with the timing replaced by a
fixed value sound more like real conversations than actual
human responses [1]. This implies that even if a response
generation model is trained using response times recorded in
corpus data (i.e., actual conversations), it is not always possible
to respond with the appropriate timing. Therefore, to achieve
the appropriate response timing, it is crucial to not only train
models by corpus data, but also to analyze what response times
humans perceive as appropriate for each response.

Fig. 1: Procedure of listening test and calculation of realness
score (RS). Extraction of Corpus Data is explained in Section

III-A, and Vote for Real Audio and calculation of RS is
explained in Section III-B.

In the current study, we expanded on previous research
[1] with two methodologies. First, since the previous study
only showed that some speakers tended to be significantly
preferred between an actual response and a response in which
the timing was replaced by a fixed value, we utilized more
data to analyze the differences for each response to explore
the common characteristics of response timing across speakers
in Section III. Second, we built a model based on the acquired
data and explored how well the model could predict whether
response times could be replaced by a fixed value in Section IV.
Next, on the basis of these results, we suggested applications to
SDSs, using the model to predict which responses or response
timings are appropriate for the users in Section VI.

First, we conducted a similar listening test to the previous
study to analyze which response times are considered appro-



priate for humans. The procedure of the listening test is shown
in Fig. 1. For the corpus data of the listening test, as we
aim to explore the diversity of responses for each speaker, we
chose a corpus of non-task conversations in Japanese between
a speaker and multiple interlocutors. Through several filter
conditions, we made a dataset of about 1,700 turn-changes.
For voting for the dataset, we gathered 17 annotators for each
speaker, and asked them to vote which response voice in the
audio samples sounded more realistic: the actual human re-
sponse (called actual) or the response with the timing replaced
by a fixed value (called replaced). We then defined a realness
score (RS) as the average of the votes of the annotators for each
response and utilized it to assess the extent to which humans
perceived each response time as a real conversation. Since a
medium RS contains some randomness, we also performed
a statistical test to determine which response timings have
statistically significant preferences (SSPs) between actual and
replaced: in other words, which responses can be replaced by
a fixed value and which cannot.

As a prediction task for RS, we evaluated how well a
prediction model based on neural networks detected which
turn-changes have SSPs. The recall rate of SSPs for actual
indicates the ability of the model to detect the responses
for which timing estimation is needed, and that for replaced
reflects its ability to detect when it is not needed. We evaluated
the model using speakers/interlocutor’s voice to explore which
feature is useful for the prediction, and based on the results,
we present examples of SDSs using the model.

II. RELATED WORK

One of the most representative human assessment scores in
voice is the mean opinion score (MOS). The annotators of
MOS evaluate the quality of voice subjectively and absolutely
on a five-point scale ranging from 1 (bad) to 5 (excellent). In
the VoiceMOS Challenge [2], a contest to automatically eval-
uate synthesized speech by building MOS prediction models,
there is an application study that utilizes these models to learn
only the audio, which is useful for speech synthesis from dark
data such as YouTube [3]. Our listening test and RS also aim
to achieve high-quality results through automatic evaluation.

There has been some prior work on response time estima-
tion, including an experiment with the users of an automated
call system for bus information [4], the development of a
estimation model using LSTM [1], and efforts to reduce the
effect of speech recognition delays [5], all of which featured
models trained by human response timings. Interestingly, it
has been reported that some responses replaced by the mode
value of the corpus (called mode) sound more realistic than
actual human responses. In one study [1], the authors defined
several filter conditions to extract early responses (called early)
and late responses (called late) from responses across corpus
data and then replaced the response times with the mean
of the entire late if responses were early and vice versa
(called opposite) or mode. Then, annotators listened to both
the actual (called true in the paper) and the replaced responses
and answered the question “Which response timing sounds

Fig. 2: Number of responses by response time in the target
speakers in the corpus of this study.

like it was produced in a real conversation?”. Finally, they
performed a statistical test based on the answers to confirm
which speakers have SSPs between actual and the replaced
responses (opposite or mode) at the p<0.05 level.

The test results showed that ten out of 16 speakers of true
were significantly preferred to opposite, while three out of
16 speakers of actual and three out of 16 speakers of mode
were significantly preferred to the comparison. Therefore, in
the current study, we explored true(actual) vs mode(replaced),
which was the controversial result of the previous study.

III. LISTENING TEST

To analyze which response times are considered appropriate
for humans, we collected voice data and conducted the listen-
ing test. The procedure of the listening test is shown in Fig. 1.
We used the mode value of the dataset from the corpus data
(0 ms) as a fixed value. Annotators listened to both the actual
response (actual) and the response whose timing was replaced
with the mode value (replaced) and then answered the same
question as the previous study [1] to vote which one was closer
to a real conversation. For analysis and model prediction, we
defined the realness score (RS) as the average of the answers of
annotators for each response. We also performed a statistical
test to confirm which responses humans perceived as a real
response timing.

A. Dataset for Listening Test

We used the corpus of Hayashi et al. [6], which includes
dyadic interactions in face-to-face conversations in Japanese.
A key features of this corpus is the variety of voice samples
for each speaker. The speakers to be recorded consisted of
groups of four friends, and each speaker in a group recorded
one-on-one conversations with three friends and with three
other persons the speaker was meeting for the first time (called
strangers). The difference between friends and strangers is
outside the scope of this study. Each conversation between
a speaker and an interlocutor was 1 hour.

To make a dataset of responses, we extracted the audio
of eight friends in two groups as speakers, and all (six)
interlocutors for each speaker. The distribution of the responses
is shown in Fig. 2. We first segmented each conversation audio
into voices. These were segmented by silences longer than
200 ms as inter-pausal units (IPUs), following the previous
study [1]. We utilized a voice activity detection (VAD) tool
https://github.com/wiseman/py-webrtcvad and a low-amplitude
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Fig. 3: Number of responses by response time for listening test.

Fig. 4: Distribution of the weighted mean of realness score (RS) by response time multiplied by the number of responses.
Vertical line on each bar represents the standard deviation from the mean.

detection script to divide audio into voice segments with 20-
ms splits. We then extracted turn-changes from each speaker,
defined as when an interlocutor speaks and a speaker responds.
We also defined the response as when the speaker’s voice
is shorter than that of the interlocutor in a turn-change, and
excluded those that did not meet this criterion. The response
includes not only answers to interlocutors but also backchan-
nels, laughter, reactions, and parts of a speaker’s turn.

To make a dataset for the listening test, we extracted 36
turn-changes from the eight speakers and six interlocutors for
each speaker. Due to errors during our experimental operations,
some turn-changes were excluded. In total, 1,720 turn-changes
were targeted in this study, which corresponds to about 10 %
of the dataset of responses. The distribution of responses for
the listening test is shown in Fig. 3. To extract the 1,720 turn-
changes, we set the following filter conditions for this analysis.

Variety of Response Time: To collect a wide variety of
response times for each speaker, we divided the responses into
three types: early, late, and medium. We calculated response
time statistics for each speaker and extracted those below the
30th percentile (as early), above the 70th percentile (as late),
and between early and late (as medium). We collected four
responses evenly on the basis of these types. There was a lot
of overlap, but most of it occurred without interruption [7].

Extreme Value: We excluded responses later than –20 ms
and earlier than 20 ms because we felt there would be almost
no difference in such cases even if they were replaced with
0 ms. To avoid extreme values, we also excluded responses
below the 0.1 percentile or above the 99.9 percentile.

Unnatural IPU: We excluded turn-changes in which the
replacement of response time could be easily perceived by the
factors other than voice quality, such as unnatural interruptions
in IPUs.

As a result, the distribution of the response times ranged

TABLE I: Statistics of realness score (RS) by response type.

Response type Mean SD Minimum Maximum
Early –0.25 0.38 –1.00 0.88
Medium 0.02 0.32 –0.88 0.88
Late –0.14 0.38 –1.00 0.77
Overall –0.13 0.37 –1.00 0.88

from –2140 ms to 3180 ms. The thresholds between early and
medium for each speaker ranged from –280 ms to 60 ms, and
those between medium and late ranged from 100 ms to 400
ms. The mean of the lengths of the IPUs was 2265 ms for the
interlocutors and 908 ms for the speakers.

B. Listening Test Settings

There were 17 annotators for each speaker in the listening
test. All annotators were Japanese native speakers. Each used
headphones to listen to all turn-changes of two speakers. We
shuffled the order of the turn-changes to evaluate each turn-
change without time series bias. For each response, annotators
listened to both actual and replaced, and we asked them to
answer “Which response timing sounds like it was produced
in a real conversation?”. We then calculated the RS from the
answers, with +1 for answering actual and –1 for answering
replaced and dividing by the number of annotators.

C. Listening Test Results

The results of the listening test are shown in Fig. 4 and Table
I. As seen in Fig. 4, the mean of RS was positive from 0 ms to
400 ms and was negative from –1000 ms to 0 ms. From Table
I, we found that the maximum RS was 0.88, indicating that
there were no responses where all annotators chose actual. We
also found that the mean RS of early and late responses was
negative, indicating that the annotators preferred replaced in
the two types.
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D. Statistical Test

Since a medium RS contains some randomness, we per-
formed a statistical test on the listening test results to determine
which turn-changes had statistically significant preferences
(SSPs) between actual and replaced. Specifically, a chi-square
test was conducted to confirm whether there was any bias in
the frequency of answers to actual or replaced for each turn-
change at the p<0.05 level. The results revealed that there were
SSPs in 52 turn-changes for actual and in 193 turn-changes
for replaced. In the turn-changes with SSPs for actual, the
response time closest to 0 ms was 60 ms, and the furthest
was –2140 ms. For replaced, the closest was –20 ms, and the
furthest was 2800 ms.

The turn-changes that had SSPs are shown in Table II. Early
responses resulted in the least SSPs for actual and the most
for replaced. The distribution by response time is shown in
Fig. 5. In medium, all turn-changes that had SSPs for actual
were positive, i.e. non-overlapping. For all the turn-changes
examined in the listening test, in the responses earlier than 0
ms, i.e. overlap, there were fewer SSPs for actual than for
non-overlap, and there were more SSPs for replaced. These
results suggest that, in spoken dialogue, humans tend to feel
that mode (or perhaps from 0 ms to 400 ms) responses are
more appropriate than overlap.

IV. REALNESS SCORE PREDICTION

We built a model to predict realness score (RS) and explored
how well the predicted scores could detect whether response
timing estimates are needed or not. As a reference when
applying RS to SDSs, we focused on evaluation using only
the speaker’s/interlocutor’s voice. In this study, we define the
turn-changes that have SSPs for actual as needing response
time estimation, and those for replaced as not needing it.

A. Model

The VoiceMOS Challenge [8] has shown that self-supervised
voice models are useful for predicting the quality of voice. The
self-supervised learning framework learns a large amount of
audio features, and we used it here as a audio feature extractor.
We then implemented a simple model featuring a projection
layer added to the self-supervised model as a baseline. For the
projection layer, we utilized a 1536-dimensional linear layer
that adopted ReLU [9] as the activation function and a linear
layer for score output. As the self-supervised model, we used
a public HuBERT [10] pretrained with Japanese speech https:
//huggingface.co/rinna/japanese-hubert-base.

B. Features

Following prior research [8], we input only audio waveforms
to the model. We used the audio of the speakers and the
interlocutors for a comparison. The number of interlocutors
is different from the number of speakers because the speakers
consist of friends whereas the interlocutors include both friends
and strangers. Therefore, while not a strict comparison, it is
sufficient for determining how effective a speaker’s features are

TABLE II: Number of turn-changes that have statistically
significant preferences (SSPs) between actual and replaced.

p <0.05 Response type Total (%)Early Medium Late
Actual 14 19 19 52 (3.0)
Replaced 107 12 74 193 (11.2)

Fig. 5: Number of turn-changes that have SSPs between
actual and replaced by response time.

by using the features of another. We utilized RS normalized
from 0 to 1 as the training label.

C. Experimental Settings

We used k-fold cross-validation and measured the out-of-
fold prediction scores for each fold. We adopted k = 6 and
equalized the number of speakers and interlocutors in each
fold. Since we confirmed that strong regularization leads to
excessive average results on training data, we set the learning
rate to 1e–06 and the weight decay to 1e–05 for model
fitting. The model was trained for 70 epochs using Adam [11]
without scheduler. The loss function was L1 loss. To enhance
reliability, we performed the cross validation with five seeds,
and used the average of metrics calculated for each seed as
the performance measures.

For evaluation, we defined three evaluation metrics: the
recall of SSPs for actual (Ra ), the recall of SSPs for replaced
(Rr ), and the balanced accuracy (BA). These were calculated
as follows:

Ra =
Ta

Ta + Fr
Rr =

Tr

Tr + Fa
BA =

1

2
(Ra +Rr ) (1)

where:
• Ta/r is the number of predicted responses that are nec-

essary/unnecessary to estimate timings, which have SSPs
for actual/replaced.

• Fa/r is the number of predicted responses that are nec-
essary/unnecessary to estimate timings, which have SSPs
for replaced/actual.

For these evaluation metrics, we set the prediction score
threshold as the mean of the score labels.
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In addition, we defined a true actual rate (TAR) and a
false actual rate (FAR) to evaluate the performance for each
prediction score threshold using ROC curve and AUC:

TAR =
Ta

Ta + Fr
FAR =

Fa

Fa + Tr
(2)

D. Experimental Results
The evaluation results are provided in Table III. Ra shows

0.669 and BA shows 0.618 using the speaker’s voice as input.
Rr is higher when learning using the interlocutor’s voice. This
result may be caused by using the features of the interlocutors
or by the number of the interlocutors. The ROC curves are
shown in Fig. 6. AUC was 0.650 using the speaker’s voice,
which indicates that the prediction model was more accurate
than random selection.

As an ablation study, we also show the prediction results of
each response type in Table IV. We found that the prediction of
early responses had the highest AUC and the biggest difference
of predicted RS between actual and mode of all response type.

V. DISCUSSION AND FUTURE WORK

In this study, there were some biases in the accuracy of the
RS prediction to early. Towards the automatic evaluation of
response timing, exploring how to predict the other patterns is
required. Several aspects remain to be analyzed:

1) Difference between friends and strangers
2) Difference between each speaker
3) Dialogue act analysis (e.g., backchannel, laughter, etc.)
4) 5-point-scale evaluations gathered from annotators
It may be possible to uncover new patterns that can be

detected as proper response timings for humans from the
results of these analyses. To explore the characteristics of RS,
experiments using the fixed values other than 0 ms are also
required.

A. Modalities and Contexts
It is well known that the overlap frequency is different

between video conferences and face-to-face meetings [7].
Since we conducted the listening test with a limited number
of modalities (audio only) and contexts, conducting a listening
test with multimodal perception or several contexts might
reveal different results or model performances. In addition,
there are differences in response times depending on the
language [12], research in other languages is needed.

VI. TOWARDS DEVELOPING SPOKEN DIALOGUE SYSTEMS
WITH APPROPRIATE RESPONSE TIMING

We explored the prediction accuracy of realness score (RS)
and found that it may be possible to achieve the automatic
assessment of response timing quality using an RS prediction
model. This section discusses the challenges in applying the
RS model to SDSs. Since the realness of SDS response timing
is determined by the SDS user, we need to explore how a
user actually feels when interacting with an SDS. We therefore
explore some of the topics relating to the development of SDSs
using RS prediction models.

TABLE III: Comparison of evaluation metrics when using
the mean of score labels as the prediction score threshold.

Audio feature Ra Rr BA AUC
Speaker’s voice 0.669 0.567 0.618 0.634
Interlocutor’s voice 0.446 0.624 0.535 0.559

Note: The number of interlocutors is more than that of speakers.

Fig. 6: ROC curves for realness score (RS) prediction model
using the voice of speakers and interlocutors.

TABLE IV: Prediction results of each response type
inputting the voice of speakers.

Response type AUC Mean of predicted RS
Actual Replaced

Early 0.795 0.115 –0.181
Medium 0.540 –0.115 –0.153
Late 0.629 –0.023 –0.126
Overall 0.650 –0.019 –0.159

A. Fixed Value for Timing Replacement

We should first mention the fixed value for the timing
replacement. SDSs and VAD tools incur latency when reacting
to user utterances. As the fixed value is 0 ms in this study, we
cannot utilize the current model directly unless we have pre-
diction models of future conversational events [13]. However,
the mode value was just an example of RS measurement and
there were high RSs at the response timing from 0 ms to 400
ms; therefore, it would be interesting to evaluate RSs within
ranges other than 0 ms.

B. Example of SDSs using RS: Natural Fixed Timing Filler

Under our experimental settings, we can predict RS using
only system voices. If we extract system voices in advance,
we would be able to predict the voice response timing quality
before starting an interaction. In addition, as stated, a high RS
response needs a response time estimation, while a low one
can be replaced by a fixed value. Therefore, we can extract the
responses that can be replaced by a fixed value before starting
an interaction as low RS voices using an RS prediction model.

Fig. 7 shows an example of the turn-change using the model.
The green zone indicates a low RS voice predicted by the
model at a fixed timing, and SDSs can use it as a filler with
natural response timing. This will make the quality of response
timing stable and increase the time for generating responses.
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Fig. 7: Example of turn-change of SDSs using realness score
(RS) prediction model. The model predicts natural voices at a
fixed timing before starting the interaction. In the interaction,

SDSs use them as fillers at the fixed timing (green zone).

C. Example of SDSs using RS: Multi-Timing Learning

We can use the model to perform inference during conver-
sations. By predicting the RSs of multiple response timings by
the same model, we can predict the most proper fixed timings,
including human perceptions. We leave this for future work.

D. VAD Accuracy

Since the end timing detection of IPUs will be different
depending on the annotators (including VAD tools), we recom-
mend using the same VAD model not only in the training data
but also in the applications. In addition, VAD models must deal
with different cases such as phonemes, noises, and languages,
so if the RS prediction model uses the interlocutor’s features
as input, we also have to deal with different cases in the model
as well as VAD models. Even if using the system’s ones, we
need to pay attention to the accuracy of VAD models in tens
to hundreds of milliseconds depending on the requirements of
the SDS.

VII. CONCLUSION

Through an experiment on about 1,700 human responses,
we clarified the distribution of RS and the possibility of
detecting which responses can be replaced with fixed values
for appropriate response timing by a simple model. Although
there were some patterns that could not be observed due to
the filtering process, the voice patterns of the speakers in this
study were generally covered. The RS we proposed can also be
utilized with previous timing estimation models or with other
voice models. We believe the usage of this score will help in
the construction of SDSs that are comfortable for humans.
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